Systematic Review and Evidence Integration for Literature-Based Health Assessments

Andrew Rooney, PhD

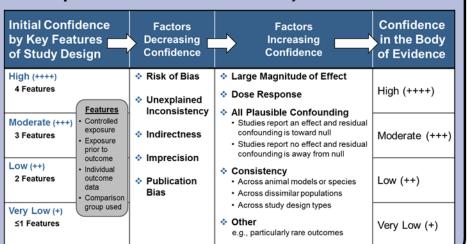
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting June 25, 2013

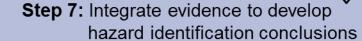
Timeline

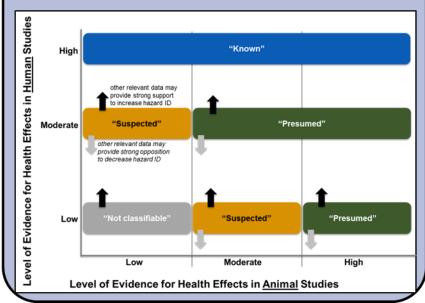
- December 2012: NTP Board of Scientific Counselors Meeting
- February 2013: Framework Released for Public Comment
 - Draft OHAT Approach for Systematic Review and Evidence Integration
- April 6, 2013: Case-Study Protocols Released for Public Comment
 - Draft Protocol to Evaluate the Evidence for an Association Between Bisphenol A (BPA) Exposure and Obesity
 - Draft Protocol to Evaluate the Evidence for an Association Between Perfluorooctanoic Acid (PFOA) or Perfluorooctane Sulfonate (PFOS) and Immunotoxicity
- April 23, 2013: Public Q&A at Web-Based Informational Meeting

Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments



Step 2: Search for and select studies


Step 3: Extract data from studies


Step 4: Assess individual study quality

Step 5: Rate confidence in body of evidence

Step 6: Translate confidence ratings into level of evidence for health effect

Presentation Overview

- Major Technical and Scientific Questions Moving Forward
- How Comments Have Informed the Issues
- Outline How NTP is Trying to Reach Resolution
- Illustrate Our Initial Approach with Examples from Case-Studies
- Discussion with the NTP Board of Scientific Counselors

Major Technical and Scientific Questions Moving Forward

- How Does the Approach Address Study Quality?
- Excluding Studies or "Tiers" Based on Quality
- Confidence in Body of Evidence Initial Confidence Rating
- Consideration of Other Relevant Data (e.g., mechanistic)

Many Comments on Study Quality

- Support for Study Quality as Internal Validity or Risk of Bias
- Don't Restrict Study Quality to Internal Validity
- Suggested Additions

Study Quality in Different Steps of Approach

- Internal Validity or Risk of Bias (STEP 4)
 - Completeness of reporting
 - Confounding
 - Study design and conduct
- External Validity or Directness and Applicability (STEP 5)
 - Route of exposure
 - Timing and duration of exposure
 - Relevance of animal model for human health
- Continued Evaluation
 - Conflict of interest
 - Power

Major Technical and Scientific Questions Moving Forward

- How Does the Approach Address Study Quality?
- Excluding Studies or "Tiers" Based on Quality
- Confidence in the Body of Evidence Initial Confidence Rating
- Consideration of Other Relevant Data (e.g., mechanistic)

Excluding Studies or "Tiers" Based on Quality

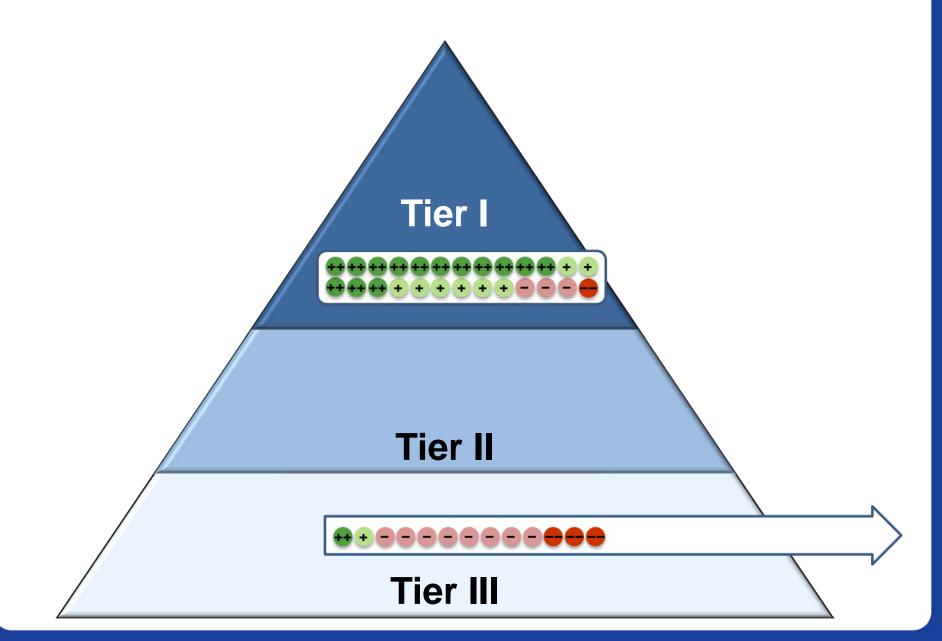
- Study Quality Impacts Confidence in the Conclusions
 - Should all studies contribute to the conclusions?
 - Can studies have too many problems with internal validity or risk of bias?
 - Would confidence be "diluted"?
- Exclude Studies for Established Reasons in Protocol (STEPs 1&2)

Individual Study Quality (STEP 4)

	Example Answers to Risk of Bias Questions												
Studies (on outcome basis)	Question #1	Question #2	Question #3	Question #4	Question #5	Question #6	Question #7	Question #8	Question #9	Question #10	Question #11	Question #12	Question #13
Bucher et al., 2002	++	++	••	••	++	+	++	••	•	••	+	+	+
Wolfe et al., 2000	++	++	++	+	+	+	+	+	+	-			•
Thayer et al., 2010	••	++	••	••	+	+	+	+	-	-			
Boyles et al., 2011	++	+	+	+	+	+	+	-					
Rooney et al., 2013	•	+							-				

Answers on 4-point scale

Using Individual Study Quality in Next STEPS


- "Tiers" from Individual Study Quality Assessed in STEP 4
 - Restrict confidence rating conclusions to top tier studies
 - How do we assess the impact of removing low-quality studies on confidence conclusions developed in STEP 5?

High quality = Fewer challenges to internal validity

Tier II

Tier III

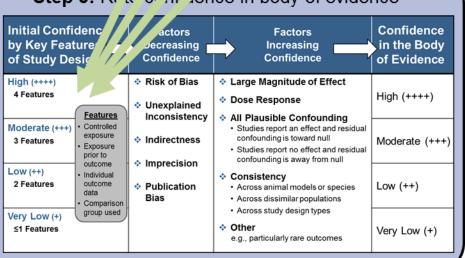
Sensitivity Analysis

Major Technical and Scientific Questions Moving Forward

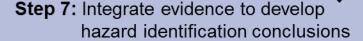
- How Does the Approach Address Study Quality?
- Excluding Studies or Tiers Based on Quality
- Confidence in Body of Evidence Initial Confidence Rating
- Consideration of Other Relevant Data (e.g., mechanistic)

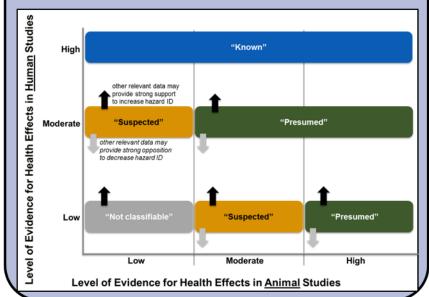
Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments

You Are HERE


Step 1: Prepare topic

Step 2: Search for and select studies


Step 3: Extract cata rom studics

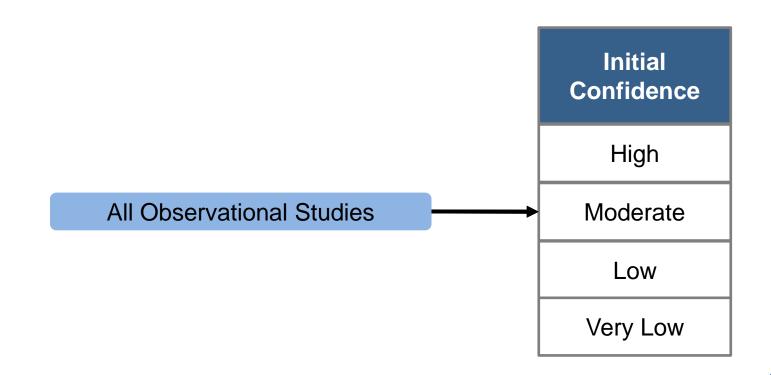

Step 4: Asses in dividual study quality

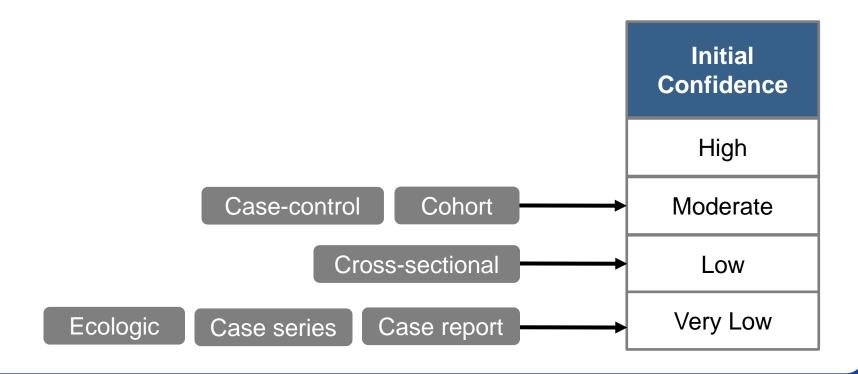
Step 5: Reconfidence in body of evidence

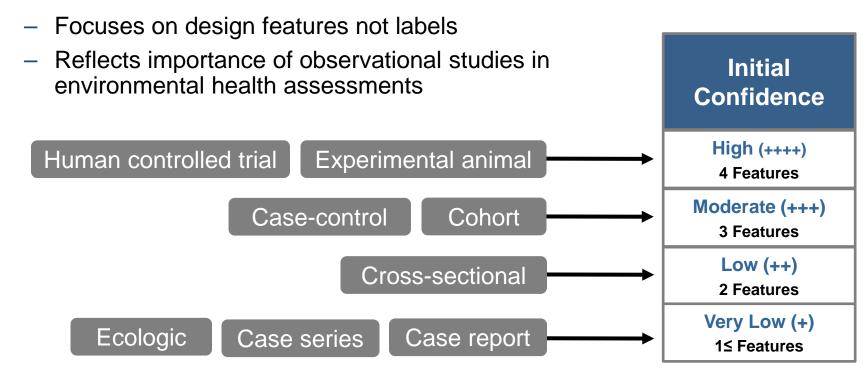
Step 6: Translate confidence ratings into level of evidence for health effect



Confidence in the Body of Evidence (Step 5) Initial Confidence Rating


- Based on Established Method (GRADE)
 - Clear presentation of elements considered for downgrading or upgrading confidence in a body of evidence
 - Framework for documenting scientific judgment decisions
 - Elements cover Bradford Hill causality considerations
- Initial Confidence
 - Where do you start?


- Initial Confidence Based on Study Design
- Options for Observational Studies
 - Start all observational studies as "low" (GRADE)

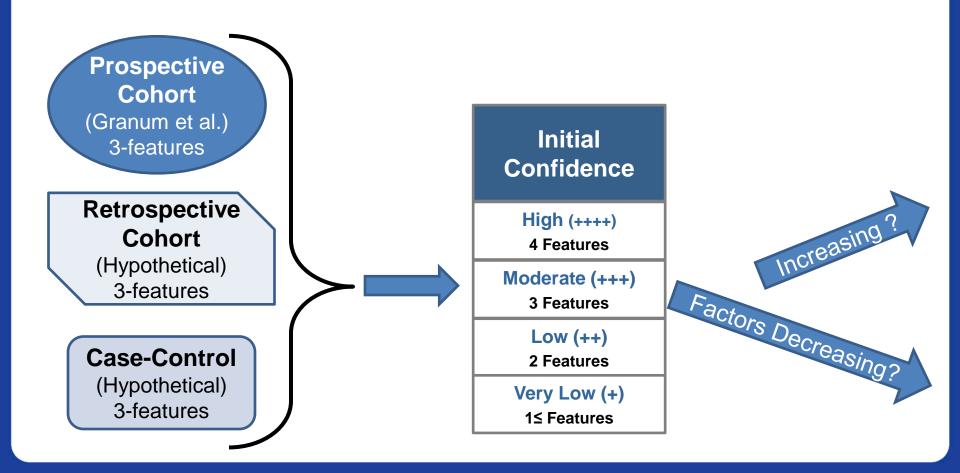

- Initial Confidence Based on Study Design
- Options for Observational Studies
 - Start all observational studies as "moderate" (Navigation Guide)

- Initial Confidence Based on Study Design
- Options for Observational Studies
 - Stratify based on study design labels (Initial OHAT method)

- Initial Confidence Based on Key Study Design Features (current)
 - Controlled exposure
 - Exposure prior to outcome
 - Individual outcome data
 - Comparison group used
- This Method Stratifies Initial Confidence:

Case-Study Example: Initial Confidence

	Granum <i>et al.</i> , 2013 (prospective birth-cohort) (sub-cohort of Norwegian Mother and Child Cohort Study)						
Study Design Feature							
Controlled exposure	No						
Exposure prior to outcome	Yes	Maternal blood levels at delivery					
		Child blood levels at 3 years of age					
Individual outcome data	Yes	Measured in 3-year-old children					
Comparison group used	Yes	Multivariate regression of exposure (PFOA or PFOS) and health outcomes					


Granum et al. (2013) J Immunotoxicology

Initial Confidence of a Single Study

- GRADE: Low
- Navigation Guide: Moderate
- Initial OHAT method ("label"): Moderate
- Current OHAT method ("design feature"): Moderate

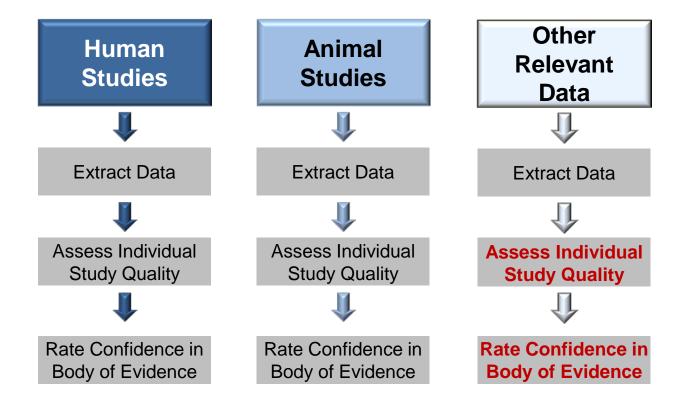
Initial Confidence by Study Design Features

Starting Point for Evaluating Confidence in the Body of Evidence

Major Technical and Scientific Questions Moving Forward

- How Does the Approach Address Study Quality?
- Tiering or Excluding Studies Based on Quality
- Confidence in the Body of Evidence Initial Confidence Rating
- Consideration of Other Relevant Data (e.g., mechanistic)

Consideration of Other Relevant Data


- Three Evidence Streams
 - Human studies
 - Animal studies (non-human)
 - Other relevant data (in vitro, mechanistic, etc.)

Need:

- To develop a parallel approach for considering other relevant data
- To prepare for the future datasets lacking human and animal studies

Challenges to Parallel Approach

- Near-term Research:
 Explore development of a study quality (internal validity) tool for in vitro studies
- Biological Plausibility:
 Considering factors that parallel those used to evaluate confidence in other evidence streams

How NTP is Trying to Reach Resolution on Major Technical Questions Moving Forward

- Study Quality
 - Internal validity (Step 4)
 - External validity (Directness in Step 5)
- Tiering to Consider the Impact of High Risk of Bias Studies
- Initial Confidence Rating on Study Design Features
- Parallel Approach for Other Relevant Data

Acknowledgements

Office of Health Assessment and Translation

- Abee Boyles
- Kembra Howdeshell
- Andrew Rooney, Deputy Director
- Michael Shelby
- Kyla Taylor
- Kristina Thayer, Director
- Vickie Walker

Office of Liaison, Policy and Review

- Mary Wolfe, Director
- Lori White

Office of Library and Information Services

Stephanie Holmgren

Approach Technical Advisors and Experts

- Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco
- Gordon Guyatt, Co-chair, GRADE Working Group, McMaster U
- Malcolm Macleod, CAMARADES Centre, University of Edinburgh
- Karen Robinson, Co-Director, Evidence-Based Practice Center,
 The Johns Hopkins Bloomberg School of Public Health
- Holger Schünemann, Co-chair, GRADE Working Group, McMaster U.
- Tracey Woodruff, Director, Program on Reproductive Health and the Environment. UCSF

NTP Board of Scientific Counselors

NTP BSC Working Group

- Lynn Goldman, Chair, Dean, School of Public Health and Health Services, George Washington U.
- Reeder Sams, Vice-chair, Acting Deputy Director, NCEA/RTP Division, USEPA
- Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco
- Edward Carney, Senior Science Leader,
 Mammalian Toxicology, Dow Chemical Company
- David Dorman, Professor, North Carolina State University
- Elaine Faustman, Director, Institute for Risk Analysis and Risk Communication, U. Washington
- Dale Hattis, Research Professor, George Perkins Marsh Institute, Clark University
- Malcolm Macleod, CAMARADES Centre, University of Edinburgh
- Tracey Woodruff, Director, Program on Reproductive Health and the Environment, UCSF
- Lauren Zeise, Chief, Reproductive and Cancer Hazard Assessment Branch, OEHHA, California EPA

Protocol Technical Advisors